If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9w^2+3w=0
a = 9; b = 3; c = 0;
Δ = b2-4ac
Δ = 32-4·9·0
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-3}{2*9}=\frac{-6}{18} =-1/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+3}{2*9}=\frac{0}{18} =0 $
| 7=2+a | | 6r-6r+4r-r=6 | | 0=5x-(90+2x) | | 2x+5-4x=3+6x-4 | | |b+3|=11 | | 24=y25 | | p-7=-3p+8 | | c+776=831 | | 7(x+3)=-42 | | 5z-45=180 | | 90+90+120=k | | √21-4p=p | | 52=12x+6 | | -4K-9=-3k-2 | | p−614=126 | | 8x^2-45x=24 | | 70+100+50=k | | 14.9=z-12.4 | | -21=2x+2x-9 | | 13k-10k=5 | | g+14=44 | | -9-5x+4x=3 | | N-9=-2n+9 | | 128+62+80=3x | | 4(-a+1)=7-3(2a-5) | | x+10+7x=42 | | 7-m/3=1 | | -5x+9-7x=-111 | | -3+7n=-3(-3n+5) | | -4(2x+4)=24 | | 1/5^x+4=625 | | –13=z–20 |